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Abstract

A recent paper by Jedwab and Wodlinger renewed interest in a
problem of multislit spectrometer design first proposed by Golay in
1951 but subsequently forgotten. It is shown that Golay’s formulation
of the problem in terms of 0/1 binary sequences is unduly restrictive.
By relaxing the restrictions, infinitely many spectrometer designs sat-
isfying all the original physical criteria can be found. Three construc-
tions for such spectrometer designs are presented, involving Golomb
rulers and variants. These constructions explain all nontrivial exam-
ples involving at most 26 slits.

Keywords binary sequence, Golay, Golomb ruler, multislit spectrome-
ter, wavelength isolation

1 Introduction

In 1951, Golay [4] described a design for a multislit spectrometer that isolates
desired radiation, having a single predetermined wavelength, from back-
ground radiation of all other wavelengths. The principle is to separate the
incoming radiation into two streams and to pass each stream to its own
detector; the detectors treat the background wavelengths equally, but treat
the desired wavelength differentially. Both radiation streams pass through
an entrance mask and exit mask comprising a pattern of open and closed
slits, as in Figure 1. Background radiation that passes through an open slit
of the entrance mask is diffracted either to the left or to the right, according
to its wavelength. We may assume that desired radiation passes through an
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open slit of the entrance mask without diffraction (by translating the exit
mask if necessary).

Source
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Detector Detector
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Figure 1: Golay’s spectrometer design

The slit patterns are designed so that the energy of the radiation reaching
each detector (after passing through an open slit of the entrance mask and
an open slit of the exit mask) is equal for all background wavelengths, but
different for the desired wavelength. The difference in total energy received
by the two detectors is then entirely attributable to radiation of the desired
wavelength. The design criterion is that the number of times an open slit of
the exit mask lies at a displacement of v positions from an open slit of the
entrance mask is the same in the two detectors exactly when v 6= 0. Figure 1
illustrates the case v = 3 (one time in both detectors) and the case v = 0
(four times in the left detector, never in the right detector).

We represent the pattern of n slits for each of the four masks by 0/1
binary sequences A, A′, B, B′ of length n (where 1s represents open slits
and 0s represent closed slits), as in Figure 2. For real-valued sequences
X = (x0, x1, . . . , xn−1) and Y = (y0, y1, . . . , yn−1) (we shall always index
sequences starting from 0), define the aperiodic crosscorrelation of X and
Y at shift v ∈ {0, 1, . . . , n− 1} by CX,Y (v) =

∑n−1−v
i=0 xiyi+v. We can then
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express the design criteria for the 0/1 sequence set (A, A′, B,B′) as

CA,A′(v) = CB,B′(v) for 1 ≤ v < n, (1)

CA′,A(v) = CB′,B(v) for 1 ≤ v < n, (2)

CA,A′(0) > CB,B′(0). (3)

A 1 1 1 10 0 0 0

A′ 1 1 1 10 0 0 0

B1 10 0 0 0 0 0

B′1 1 1 1 1 10 0

1

Figure 2: Binary sequences corresponding to spectrometer masks of Figure 1

The value CA,A′(0)−CB,B′(0) is the differential of the desired wavelength
as measured by the two detectors; we wish to find sequence sets (A, A′, B,B′)
satisfying constraints (1) and (2) and (to allow sensitive measurements of the
desired wavelength) having a large positive differential. Golay [4] proposed
the simplification

A′ = A and B′ = B, (4)

where B represents the 0/1 complement of the sequence B. Jedwab and
Wodlinger [7] called the subset (A, B) of a 0/1 sequence set (A, A′, B,B′)
satisfying (1)–(4) a wavelength isolation sequence pair (WISP). They estab-
lished the necessary condition that the sequence B of a WISP (A, B) be
symmetric [7, Proposition 2], and produced nontrivial examples (in which
the sequence A has at least two 1s) for lengths 3, 5, 7, 8, and 13 from perfect
Golomb rulers (defined in Section 2 below) via two constructions [7, Theo-
rem 9]. The examples at lengths 7 and 13 were unknown to Golay; in view
of the apparent scarcity of examples, he proposed a different spectrometer
design involving what are now known as Golay complementary pairs (see,
for example, [5], [8], [3]).

This paper was motivated by the observation that Golay’s proposed sim-
plification B′ = B is unduly restrictive: we need only satisfy constraints (1)
and (2) with a large positive differential CA,A′(0) − CB,B′(0). Writing
B = (bi) and B′ = (b′i), it turns out that relaxing the restriction (4) to

A′ = A and (b′i, bi) 6= (1, 1) for all i (5)

(that is, allowing the additional possibility that (b′i, bi) = (0, 0) for one or
more values of i) is sufficient to enable the existence of examples having an
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arbitrarily large differential. (The restriction (5) can be further relaxed, but
it appears that the solution set is already sufficiently rich without needing
to do so.) Rewriting the constraints (1)–(3) subject to (5), replacing B′

by C, and writing w(A) for the number of 1s in A, leads to the following
definition.

Definition. Let A, B = (bi), C = (ci) be 0/1 sequences of length n. The
sequence set (A, B,C) forms a wavelength isolation sequence triple (WIST)
of length n if w(A) > 0 and

(bi, ci) 6= (1, 1) for all i, and (6)
CA,A(v) = CB,C(v) = CC,B(v) for 1 ≤ v < n. (7)

The differential CA,A(0) − CB,C(0) of a WIST (A, B,C) equals w(A),
since CB,C(0) = 0 by (6). We seek WISTs having large differential.

2 Constructions

We shall give three constructions of WISTs, all of which can be applied to
Golomb rulers; the second and third constructions can also be applied to
more general inputs. A Golomb ruler R of length ` and order d > 0 is a
set of d integers with least element 0 and greatest element `, such that each
integer in {1, 2, . . . , `} can be realised at most once as a difference of distinct
elements of R. In the case that “at most once” can be replaced by “exactly
once,” the Golomb ruler is perfect. For example, {0, 4, 5, 7} is a Golomb
ruler of length 7, and {0, 1, 4, 6} is a perfect Golomb ruler of length 6. A
counting argument shows that ` ≥

(
d
2

)
for a Golomb ruler and ` =

(
d
2

)
for a

perfect Golomb ruler.
Several infinite families of Golomb rulers, having length ` and order

approximately
√

`, have been algebraically constructed (see [2] for a survey).
In contrast, up to reversal and translation there are only four perfect Golomb
rulers, one for each of the orders 1, 2, 3, 4 (a result attributed to Golomb
in [1]).

The input R to our first WIST construction is an arbitrary Golomb ruler.

Theorem 1 (First WIST construction). Let R be a Golomb ruler of length `
and order d, and let D be the set of positive integers that are realised as a
difference of distinct elements of R. For 1 ≤ v ≤ `, let

yv =

{
1 for v ∈ D

0 otherwise.
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Let A = (ai), B, C be the 0/1 sequences of length 2` + 1 given by

ai =

{
1 for i ∈ R

0 otherwise,

B = (0 0 . . . 0 1 0 . . . 0 0),
C = (y` y`−1 . . . y1 0 y1 . . . y`−1 y`).

Then (A, B,C) is a length 2` + 1 WIST with differential d.

Proof. It is immediate that w(A) = d > 0, condition (6) holds, and

CA,A(v) = CB,C(v) = CC,B(v) = 0 for ` < v ≤ 2`.

We therefore need show only that

CA,A(v) = CB,C(v) = CC,B(v) for 1 ≤ v ≤ `.

For v in this range, we have CA,A(v) = 1 if and only if v ∈ D, which occurs
if and only if yv = 1. Therefore CA,A(v) = yv. On the other hand, by
construction we have CB,C(v) = CC,B(v) = yv.

For example, let R be the Golomb ruler {0, 4, 5, 7} of length 7 and order 4.
Then D = {1, 2, 3, 4, 5, 7}, and the sequences

A = (1 0 0 0 1 1 0 1 0 0 0 0 0 0 0),
B = (0 0 0 0 0 0 0 1 0 0 0 0 0 0 0),
C = (1 0 1 1 1 1 1 0 1 1 1 1 1 0 1)

form a WIST of length 15 with differential 4.
Since there are Golomb rulers of arbitrarily large order, Theorem 1 con-

structs WISTs of arbitrarily large differential. The special case of Theorem 1
in which R is a perfect Golomb ruler, so that D = {1, 2, . . . , `}, was given as
the second construction of [7, Theorem 9]: the sequence pair (A, B) is then
a WISP.

The set D of differences in our second WIST construction requires more
structure than in Theorem 1, but the input R need not be a Golomb ruler.

Theorem 2 (Second WIST construction). Let R be a set of d > 0 integers
with least element 0 and greatest element `, and let D be the multiset of

(
d
2

)
positive integers that are realised as a difference of distinct elements of R.
Suppose that D can be written as the disjoint multiset union

⋃
s∈S(s + D1)
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for some set D1, and some set S of integers with least element 0 and greatest
element m > 0 satisfying s ∈ S ⇔ m− s ∈ S. Let

yv =

{
1 for v ∈ D1

0 otherwise

for 1 ≤ v ≤ ` −m, and let A = (ai), B = (bi), C be the 0/1 sequences of
length 2`−m + 1 given by

ai =

{
1 for i ∈ R

0 otherwise,

bi =

{
1 for i ∈ `−m + S

0 otherwise,

C = (y`−m y`−m−1 . . . y1 0 . . . 0 y1 . . . y`−m−1 y`−m).

Then (A, B,C) is a length 2`−m + 1 WIST with differential d.

Proof. The only part that is not immediate is

CA,A(v) = CB,C(v) = CC,B(v) for 1 ≤ v ≤ `.

For v in this range, CA,A(v) is the multiplicity of v in the multiset D, and
therefore

CA,A(v) =
∣∣∣{s ∈ S : v ∈ s + D1}

∣∣∣
=
∣∣∣{s ∈ S : yv−s = 1}

∣∣∣
=
∑
s∈S

yv−s

(where we define yv to be 0 when v lies outside the range 1 ≤ v ≤ `−m). But
by construction we have CC,B(v) =

∑
s∈S yv−s, and since B is symmetric

(because s ∈ S ⇔ m − s ∈ S) and C is symmetric we have CB,C(v) =
CC,B(v).

We note that, for a given multiset D in Theorem 2, there can be more
than one choice for the sets D1 and S. We also note that the condition
s ∈ S ⇔ m− s ∈ S of Theorem 2 always holds when |S| = 2.

A special case of Theorem 2 occurs when R is a Golomb ruler of length `
and order d, so that the multiset D is in fact a set. For example, let R
once again be the Golomb ruler {0, 4, 5, 7} of length 7 and order 4. Then
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D = {1, 2, 3, 4, 5, 7} is the disjoint multiset union
⋃

s∈S(s+D1), where D1 =
{1, 2, 5} and S = {0, 2}, and the sequences

A = (1 0 0 0 1 1 0 1 0 0 0 0 0),
B = (0 0 0 0 0 1 0 1 0 0 0 0 0),
C = (1 0 0 1 1 0 0 0 1 1 0 0 1)

form a WIST of length 13 with differential 4. This WIST has the same
differential as that produced by Theorem 1, but is shorter and so can be im-
plemented in a more compact spectrometer. In general, the WIST obtained
by using a suitable Golomb ruler in Theorem 2 has the same differential but
is shorter than that obtained by using the same Golomb ruler in Theorem 1.
The special case of Theorem 2 in which R is a perfect Golomb ruler, so that
we may take D1 = {1} and S = {0, 1, . . . , ` − 1}, was given as the first
construction of [7, Theorem 9]: the sequence pair (A, C) is then a WISP.

For an example with |S| > 2, let R be the Golomb ruler {0, 2, 7, 10, 11}
of length 11 and order 5. Then D = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}, and we may
take D1 = {1, 3} and S = {0, 1, 4, 7, 8} (which satisfies s ∈ S ⇔ 8 − s ∈ S)
to give the sequences

A = (1 0 1 0 0 0 0 1 0 0 1 1 0 0 0),
B = (0 0 0 1 1 0 0 1 0 0 1 1 0 0 0),
C = (1 0 1 0 0 0 0 0 0 0 0 0 1 0 1),

which form a WIST of length 15 and differential 5.
For an example in which R is not a Golomb ruler, let R = {0, 2, 5, 8, 9}.

Then D = {1, 2, 3, 3, 4, 5, 6, 7, 8, 9}, and we may take D1 = {1, 2, 3, 6, 7} and
S = {0, 2} to give the sequences

A = (1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0),
B = (0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0),
C = (1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1),

which form a WIST of length 17 and differential 5.
Our third WIST construction is a modification of Theorem 2, in which

some of the elements of the central block of 0s in the sequence C are now
set to 1.

Theorem 3 (Third WIST construction). Let R be a set of d > 0 integers
with least element 0 and greatest element `, and let D be the multiset of

(
d
2

)
positive integers that are realised as a difference of distinct elements of R.
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Suppose that D can be written as the disjoint multiset union⋃
s∈S

(s + D1) ∪
⋃

(s,t)∈S×T
s>t

(s− t)

for some set D1, some set S of integers with least element 0 and greatest
element m > 0 satisfying s ∈ S ⇔ m− s ∈ S, and some nonempty subset T
of {0, 1, . . . ,m} disjoint from S and satisfying t ∈ T ⇔ m− t ∈ T . Let

yv =

{
1 for v ∈ D1

0 otherwise

for 1 ≤ v ≤ `−m, and let A = (ai), B = (bi), C = (ci) be the 0/1 sequences
of length 2`−m + 1 given by

ai =

{
1 for i ∈ R

0 otherwise,

bi =

{
1 for i ∈ `−m + S

0 otherwise,

ci =


y`−m−i for 0 ≤ i < `−m

yi−` for i > `

1 for i ∈ `−m + T

0 otherwise.

Then (A, B,C) is a length 2`−m + 1 WIST with differential d.

Proof. Since S and T are disjoint subsets of {0, 1, . . . ,m}, we have (bi, ci) 6=
(1, 1) for all i. The rest of the proof is similar to that of Theorem 2. It is
sufficient to show that

CA,A(v) = CB,C(v) = CC,B(v) for 1 ≤ v ≤ `.

For v in this range,

CA,A(v) =
∑
s∈S

yv−s +
∣∣∣{(s, t) ∈ S × T : s− t = v}

∣∣∣
(where we define yv to be 0 when v lies outside the range 1 ≤ v ≤ ` −m).
But by construction we have

CC,B(v) =
∑
s∈S

yv−s +
∣∣∣{(s, t) ∈ S × T : (`−m + s)− (`−m + t) = v}

∣∣∣,
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and since B is symmetric (because s ∈ S ⇔ m− s ∈ S) and C is symmetric
(because t ∈ T ⇔ m− t ∈ T ) we have CB,C(v) = CC,B(v).

For example, let R = {0, 2, 3, 8, 10, 12, 13, 16, 17}. Then

D = {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 12,

13, 13, 14, 14, 15, 16, 17},

and we may take D1 = {1, 2} and S = {0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 15}
(satisfying s ∈ S ⇔ 15−s ∈ S) and T = {5, 10} (satisfying t ∈ T ⇔ 15− t ∈
T ) to give the sequences

A = (1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0),
B = (0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0),
C = (1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1),

which form a WIST of length 20 and differential 9.
Theorems 2 and 3 prompt the question: which sets R, and in particular

which Golomb rulers, can be written as a disjoint multiset union of the
required form?

3 Exhaustive search results

All WISTs (A, B,C) of length at most 26 were determined by an exhaustive
search written in C, in which sequence elements are recursively fixed from
the outermost positions inwards. The search algorithm takes the leftmost
element of A to be 1, since an initial block of 0s in the leftmost positions of
A can be removed and then appended to the rightmost positions. Likewise,
it takes the leftmost element of either B or C to be 1. The algorithm takes
the rightmost element of at least one of A, B, C to be 1, since otherwise the
sequences could be truncated to a shorter WIST. It also takes w(A) > 1,
in order to exclude trivial WISTs with w(A) = 1 such as those having
B = (0 . . . 0). We may transform such a nontrival WIST to an equivalent
one by applying one or more of the following transformations:

1. Interchange sequences B and C.

2. Reverse the subsequence of A beginning at its leftmost 1 element and
ending at its rightmost 1 element.

3. Reverse the subsequence of B beginning at its leftmost 1 element and
ending at its rightmost 1 element, and do the same for C.
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The search algorithm retains only one representative of each equivalence
class of nontrivial WISTs determined by these transformations.

For example, there are six inequivalent nontrivial WISTs (A, B,C) of
length 11, all of which are explained by the constructions of Section 2:
Theorem 1 accounts for the WISTs

A = (1 0 0 0 0 1 0 0 0 0 0),
B = (0 0 0 0 0 1 0 0 0 0 0),
C = (1 0 0 0 0 0 0 0 0 0 1)

and
A = (1 0 0 1 0 1 0 0 0 0 0),
B = (0 0 0 0 0 1 0 0 0 0 0),
C = (1 0 1 1 0 0 0 1 1 0 1)

and
A = (1 0 0 0 1 1 0 0 0 0 0),
B = (0 0 0 0 0 1 0 0 0 0 0),
C = (1 1 0 0 1 0 1 0 0 1 1),

Theorem 2 accounts for the WIST

A = (1 0 1 0 0 1 1 0 0 0 0),
B = (0 0 0 0 1 1 1 0 0 0 0),
C = (1 0 0 1 0 0 0 1 0 0 1),

and Theorem 3 accounts for the WISTs

A = (1 0 0 0 1 0 1 1 0 0 0),
B = (0 0 0 1 1 0 1 1 0 0 0),
C = (1 0 0 0 0 1 0 0 0 0 1)

and
A = (1 0 0 1 0 0 1 1 1 0 0),
B = (0 0 1 0 1 0 1 0 1 0 0),
C = (1 1 0 0 0 1 0 0 0 1 1).

A complete listing of the inequivalent nontrivial WISTs of length at most
26 and their corresponding aperiodic crosscorrelations is contained in [6].
A summary is given in Table 1, which shows the total number of inequiva-
lent nontrivial WISTs of length at most 26, and the maximum differential
occurring at each length. The counts in the table demonstrate that the
three constructions of Section 2 account for the existence of every nontrivial
WIST of length at most 26. Is there a longer nontrivial WIST that cannot
be explained by these constructions?
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We note that the constructed sequences B and C of Theorems 1, 2
and 3 are always symmetric, which implies by the search result above that
the sequences B and C of each nontrivial WIST (A, B,C) of length at most
26 are both symmetric. Does the same hold at all lengths? (We know that
symmetry of B is forced for nontrivial WISTs (A, B,B) at all lengths [7,
Proposition 2].)

4 Conclusion

We have shown for the first time how to construct infinitely many solu-
tions to Golay’s spectrometer design problem of 1951, by relaxing Golay’s
formulation of the corresponding 0/1 sequence design problem to require a
wavelength isolation sequence triple (WIST) rather than a wavelength iso-
lation sequence pair. These solutions allow an arbitarily large measured
differential of the desired wavelength at the detectors. The WIST construc-
tions given in Theorems 1, 2 and 3, involving Golomb rulers and variants,
account for all nontrivial WISTs of length at most 26.

We conclude by repeating some questions raised in the paper.

1. Must the sequences B and C of a nontrivial WIST (A, B,C) be sym-
metric?

2. Is there a nontrivial WIST of length greater than 26 that cannot be
explained by Theorems 1, 2 and 3?

3. Which sets R, and in particular which Golomb rulers, can be written
as a disjoint multiset union of the form required by Theorem 2 or 3?
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Length # explained # explained # explained # found by Maximum
by by by exhaustive differential

Theorem 1 Theorem 2 Theorem 3 search
2 0 0 0 0 —
3 1 0 0 1 2
4 0 0 0 0 —
5 1 1 0 2 3
6 0 0 0 0 —
7 2 0 0 2 3
8 0 1 0 1 4
9 2 2 0 4 4
10 0 2 0 2 4
11 3 1 2 6 5
12 0 1 1 2 4
13 4 4 3 11 5
14 0 2 1 3 4
15 7 2 2 11 5
16 0 3 0 3 4
17 8 6 1 15 5
18 0 2 1 3 4
19 14 8 8 30 6
20 0 2 2 4 9
21 13 6 12 31 9
22 0 5 1 6 4
23 23 6 3 32 5
24 0 2 4 6 9
25 30 15 9 54 9
26 0 2 1 3 4

Table 1: Number of inequivalent nontrivial WISTs of length at most 26 ex-
plained by the constructions of Section 2, total number found by exhaustive
search, and maximum differential at each length
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